[[Topological retraction]]
# The boundary of a ball is not a retract
The subspace $\mathbb{S}^n \sube \mathbb{B}^{n+1}$ is not a retract for any $n \in \mathbb{N}$,
i.e. there exists no continuous map $r : \mathbb{B}^{n+1} \twoheadrightarrow \mathbb{S}^n$ with $r \iota = \id_{\mathbb{S}^n}$. #m/thm/topology
> [!missing]- Proof
> #missing/proof
#
---
#state/develop | #lang/en | #SemBr